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INTERACTION OF DISPLACEMENT WAVES WITH CURVILINEAR LONGITUDINAL SHEAR CRACKS 
IN A PIEZOELECTRIC MEDIUM* 

L.A. FIL'SHTINSKII and M.L. FIL'SHTINSKII 

A dynamic antiplane problem of electroelasticity is considered for a 
piezoelectric medium with tunnel-type crack-cuts. The corresponding 
boundary value problem is reduced to a singular integro-differential 
equation for the displacement jumps at the cracks. An asymptotic 
expression is constructed for the coupled mechanical and electromagnetic 
fields near the singularities. Results of numerical solutions of the 
algorithm and some qualitative conclusions are given. 

A dynamic antiplane problem was investigated in /l/ for a piezoelectric 
medium with a rectilinear tunnel cut, using the method of series. 

1. Consider a transversely isotropic piezoelectric medium referred to the crystallographic 
axes 5, y, 2 (the crystal is the hexagonal system 6mm and the piezoceramic is polarized), 
weakened by tunnel cuts Lj(j = l,?.....k) along the z axis. Let a stress vector x,* = 0. 

I-,,f = 0, Z,* = Re [Z*P-~~~], constant along the .z axis and varying sinusoidally with time be given 
on the surfaces of the cavity-cuts, and let a monochromatic shear wave (Fig.1) be emitted 
from infinity 

Fig.1 

w. = Re [II’, (x, y) emiu*] (1.1) 

We assume that Lj(j=f,z,....k) are simple open arcs with 
curvatures satisfying the condition H, and Z+ = -Z- = Z are functions 
of class H on L = EL,/2/. 

Under these conditions, coupled mechanical and electromagnetic 
fields appear in the medium, corresponding to the state to antiplane 
deformation. Thecomplete system of equations has the form /3/: 

TX, = c,,&u~ - etjEx, D, = e15a,u% + e,,E, 

T!G = r,,a.p - elsE,, D, = e,,a,w i E,,E~ 

a1 = aiax, a, = a!ay 

l&T,, I &T,; = p-g 

&E,; - &E, I F $) = 0, alD, T aJD, = (! 

(1.2) 

(1.3) 

(1.4, 

Here (1.2) are the equations of state, (1.3) the equations of motion and (1.4) Maxwell 
equations, T,,, zy2 and ul are shear stresses and displacements along the z axis, E,? E,. Hi 
and D,. D, are the corresponding electric and magnetic field strength components and electric 
induction vector components, c44 is the shear modulus, e15 is the piezoelectric constant, 

and El, and p are the permittivity and permeability of the medium. We assume that there are 

no external charges and the conductivity of the medium is equal to zero. 
The electric and magnetic boundary conditions at the cut edges are taken in the form 

Es- = E,-, D,’ = D,-, H,’ = H,-, B,+ = B,-, B = pp,,H (i.5) 

Here E, and H, are the tangential components of the electric and magnetic field vectors, 
and D, and B, are the normal components of the electric and magnetic induction vectors. 

Henceforth, all calculations will be carried out in the electromagnetic system of units. 
Introducing the function cf, according to the formulas /l/ 

E,=-_aa,w+a@, E, = - 9 8,~ - a,@, H, = E11 2!$ (l.(i) 

we arrive at the expressions 

(1.7) 
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a= $+ (1 + x2), 

For example, for the ceramic PZT-4, c, z 1,11.10’ m/see. Therefore, when the cuts are 

not very large, we can assume that V’Q, =CJ* 
By virtue of (l.l), (1.2), (1.6) we have 

TX, = c4, (1 + x0*) &u: - e,,QD 

52 = c44 (1 + x0*) a,ru + e&D,, w = w. + w1 

D, = @,@, D, = --E&@, D, = 0 

Here w1 characterizes the perturbations in the displacement field due to the cuts. 
Putting (p is the angle between the normal to the wave front and the OS axis) 

w = Re [W(r, Y) 80~1, CD = Re [F (x, Y) e-""L1 
Jv = W, + W,, W, = re-i(alx+Wl) 

a1 = y? cos p, a2 = y2 sin i3, y2 = w/a 

we can write the boundary conditions at the edges Lj in the form 

5 = 5 + ill, t=E;-iq, jE L,, If1 = !’ - f- (j = 1, 2, . . 

I k) 

The upper sign refers to the left edge of L, (on moving from its beginning aj to the 
end bj),$ is the angle between the positive direction of the normal to the left edge and the 
0.I axis. The continuity conditions to the magnetic quantities across L, are satisfied 
automatically. 

2. To derive the integral equation for the boundary value problem stated, we must 
construct the integral representations for the functions W andF. This is easily done using 
standard methods of potential theory. In the present case, however, we would have to apply 
the procedure for the regularization of divergent integrals /4/. To avoid this, we shall 
construct integral representations not of the functions themselves, but of their first-order 
derivatives. 

In addition to the fundamental state of the system we will introduce an auxilliary state 
characterized by the presence, at some inner point of the region (-LrJl Ycl) I of a concentrated 
functional Q6(r - rO, Y - yO) where Q is the strength of the forces per unit length concentrated 
on the line 5 =x0 Y = Y,. --a3 <z< Do 

Let us calculate the sums of products of the Helmholtz equation for the i-th state and 
the corresponding derivative of the amplitude of the displacements of the j-th state (i# j;i, 
j = 1.2) This yields a divergence-type equation. Carrying out the integration over the 
region occupied by the body and applying Green's formula, we obtain 

(2.1) 

q=q(5)=[W,], E=E(t-_E,Y-_11)=-~H,(l)(y*~) 

r=lz-5/, z=s+iy, C=E$-iqEL 

Here [5W,/dcl, ldW,!a~l and [W,] are the jumps in the values of the corresponding quantities 

on L, ds is the element of the arc of the contour L,H$(x) is the n-th order Hankel function 
of the first kind, and the derivatives of the functions sought are determined at the inner 
point of the region (2, Y). 

The representations (2.1) satisfy the radiation condition /5/ and agree with the integral 
representation for W, of the form 

WI (2, Y) = ~44 (1 + ~2) j {g (ei* $ +e-iQ$)- +(pef*-ple-i*)E)ds 
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We will write the function F as follows: 

F(I,1/)=~Sf(j)ln(5--)d:-_s.!1(F)1n(f-_)d~ 
I. i 

The meaning of the functions f and I1 will be clarified below. 
Substituting the limit values of the functions (2.1) and the derivatives iiF I (I~ and 

t?Fjd: as z-.~~~=_L into the boundary conditions (1.81, we obtain 

P (:) = _ e-i9$ 5 

r I as 3 p1 (;) = - p’* 
L I 

dll’l 
da (2.2) 

f(5)=-&&), II(,)=+p(Q 

The mechanical boundary condition in (1.8), taking (2.2) into account, leads to the 

following singular integro-differential equation: 

To obtain a unique solution o f Eq.(2.3j in the class h, /2/, we must add the conditions 

\ [fgqds=i) (j=l.E,...,k) 
i 

(2.4) 

3. s uppose that there is a single cut L in the medium whose parametric equation is E = 

j (6).11 = 1) (6)(-l.< &,<I). in accordance with this we shall represent the solution of equations 

(2.3), (2.4) as 

Asymptotic 

account, yields 

of the cut: 

follows: 

nil-, !!,,(A) 
-= 

L ds I s’ (6) VT=?7 ’ 
s’ (6) = -$ , a,(a)eH[- 1, I] (Xl, 

analysis of the representations (2.1) taking relations (1.2), (3.1) into 

the following expression for the stresses on the continuation beyond the tip 

Here I denotes the distance from the tip, and upper sign refers to the beginning, and rhe 

lower to the end cf the c;t. 

The dynamic mechanical stress intensity coefficient /6! is given by +-he formula 

/i,=l -.?Ti z-2 'I x 
,1 L / m 

nv {e-1%20(f I)} (3J) 

The asymptotic form of the ncrmal component of the electric induction vector on the 

continuation beyond the crack tip is 

The eiectric and magnetic field strength vectors are bounded. This is explained by the 

fact that in the static problem of electroelasticity dealing with the longitudinal shear of 
the transversely isctroplc medium, the mechanical and electric fields are not connected; 

therefore there is no ele ctric field when external mechanical forces act on the medi>um. ThXS 

we find that under a mechanical load the sing>ular part of the electric strength vector in the 

dynamic problem is equa; tc ETC. 

4. Ec.".3 toaether w;tt: the addltlonal condition (2.4) was solved numericall:. ;~sLIJ: 
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the Multopp-type scheme /7/ forthe case when the piezoelectric ceramic PZT-5 had a single 

parabolic crack E= p16, n= p26 2, 6~1~-1,il. The approximate values of the function Q,(6) at the 
Chebyshev interpolation nodes were computed for a number of nodes equal to it= $521 and 31. A 
further increase in the number of decompositions did not, in practice, improve the accuracy. 

Let Z= 0 (there is no radiation from infinity) ) and 
I 

in the relative quantity 'x+- CU. IQ,(i)j/(ZZ I/h (i) relative to 
is the crack length) for pl= i, using the solid lines 1, 2, 
0.5 and 1 respectively. Clearly, a- = a+. 

Knowing the values of aT and SF= argl--R,(Fi)l, we can 
using the formula 

ks = Z $‘%a* cos (W - ST) 

2 = cow. Fig.2 shows the variation 
the normalized wave number y,I (21 
3 to represent the values of p2= 0; 

find the intensity coefficient k, 

The variation in the relative magnitude of a+=E,,lRO(1)11(2Tulo1/~ for the case when the cut 
edges are free of forces (Z=O), and a monochromatic shear wave (r+O) is radiated from infinity 
along the y axis, is shown in Fig.2, the dashed lines 1, 2 and 3 corresponding to p* = 0; 0.5 
and 1, respectively. Here T,,,’ denotes the stress rUr amplitude modulus in the incident wave. 

The dynamic intensity coefficient k, is given in this case by the 
formula 

ks = t/iiriuzoaF cos (ot - 6+) 

Fig.2 

The converse effect 

From relations (3.2) and (3.3) it follows that the quantitiy 

*Dn is proportional to kS near the crack tip. The graphs of 
Fig.2 can be used to determine Dn, 

Calculations show 'Aat when the crack curvature increases, 
mara+ is displaced along ~$1 to the right and its magnitude increases 
in the first numerical example, and decreases in the second. In the 
latter case the local maxima of the functions a+(y&)=a-(y,~) alternate 
with local minima, and decrease as ?,I increases. 

To estimate the influence of the coupled electromagnetic field 
on the mechanical stress intensity coefficient, we shall give the 
following data for the parabolic crack (<= 6,n=,#, -_lgbg$, z= 
const, T = 0): 

The results on the left-hand side of the table correspond to 
an isotropic medium, and those on the right-hand side correspond to 
the piezoelectric ceramic PZT= 5. 

P2 0 0.5 1 0 0.5 I 
y,l 0.9 1.1 1.35 0.75 0.9 1.1 

rmx a+ 1.20 1.30 I,65 1.27 1.40 1.78 

can be assumed to exist, since the mechanical external loads induce 
a singular electric displacement field. 

1. 

2. 
3. 

4. 

5. 

6. 
7. 
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